A Numerical Study of the Self-Similar Solutions of the Schrödinger Map

نویسندگان

  • Francisco de la Hoz
  • Carlos J. García-Cervera
  • Luis Vega
چکیده

We present a numerical study of the self-similar solutions of the Localized Induction Approximation of a vortex filament. These self-similar solutions, which constitute a one-parameter family, develop a singularity at finite time. We study a number of boundary conditions that allow us reproduce the mechanism of singularity formation. Some related questions are also considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

Numerical solution for one-dimensional independent of time Schrödinger Equation

In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...

متن کامل

Investigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation

In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...

متن کامل

Self-similar Solutions for the Schrödinger Map Equation

We study in this article the equivariant Schrödinger map equation in dimension 2, from the Euclidean plane to the sphere. A family of self-similar solutions is constructed; this provides an example of regularity breakdown for the Schrödinger map. These solutions do not have finite energy, and hence do not fit into the usual framework for solutions. For data of infinite energy but small in some ...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2009